Bonneville Power Administration Fish and Wildlife Program FY99 Proposal #### Section 1. General administrative information # **Evaluate Juvenile Salmonid Outmigration And Survival In The Lower Umatilla** Bonneville project number, if an ongoing project 8902401 Business name of agency, institution or organization requesting funding Oregon Department of Fish and Wildlife **Business acronym (if appropriate)** ODFW Proposal contact person or principal investigator: Name Richard Carmichael Mailing Address 211 Inlow Hall, EOU, 1410 "L" Avenue City, ST Zip La Grande, OR 97850 **Phone** (541) 962-3777 **Fax** (541) 962-3849 **Email address** odfw2@eosc.osshe.edu #### Subcontractors. | Organization | Mailing Address | City, ST Zip | Contact Name | |--------------|-----------------|--------------|---------------------| NPPC Program Measure Number(s) which this project addresses. 7.0C.4, 7.1C, 7.2D, 7.2D.1, 7.4I, 7.4I.1, 7.4L, 7.4L.1, 7.10, 7.10A.2 NMFS Biological Opinion Number(s) which this project addresses. No biological opinions have addressed the Umatilla River Outmigration Study #### Other planning document references. Response: Monitoring activities are called for in A Comprehensive Plan for Rehabilitation of Anadromous Fish Stocks in the Umatilla River Basin (Boyce 1986); the Umatilla Hatchery Master Plan (ODFW and CTUIR 1990); the Umatilla River Subbasin Salmon and Steelhead Plan (ODFW and CTUIR 1989); and, Umatilla Basin Project- Initial Project Workplan (USBR and BPA 1989). The Wy Kan Ush Me Wa Kush Wit plan calls for continuation of current monitoring of all artificail production actions in the Umatilla basin (volume II, page 45). Support for Watershed project provided by USBR, CTUIR, Umatilla Basin Watershed Council, ODOT, local irrigation districts, OWRD, and NMFS. #### Subbasin. Umatilla River subbasin #### **Short description.** Determine migration patterns, evaluate health, estimate abundance and survival of outmigrating juvenile salmonids in the Umatilla River; investigate effect of environmental variables on fish migration and video-document passage at Three Mile Falls Dam. ## Section 2. Key words | Mark | Programmatic
Categories | Mark | Activities | Mark | Project Types | |------|----------------------------|------|------------------|------|-----------------------| | X | Anadromous fish | | Construction | X | Watershed | | + | Resident fish | | O & M | | Biodiversity/genetics | | | Wildlife | | Production | | Population dynamics | | | Oceans/estuaries | + | Research | | Ecosystems | | | Climate | X | Monitoring/eval. | + | Flow/survival | | | Other | | Resource mgmt | | Fish disease | | | | | Planning/admin. | | Supplementation | | | | | Enforcement | | Wildlife habitat en- | | | | | Acquisitions | · | hancement/restoration | #### Other keywords. Response: life history, sampling, predation, passage, fish health, natural production, flow enhancement, passage facilities, trap efficiency ## Section 3. Relationships to other Bonneville projects | Project # | Project title/description | Nature of relationship | |-----------|-------------------------------------|--------------------------------------| | 9000500 | Umatilla Hatchery Monitoring and | Migration monitoring provides data | | | Evaluation - hatchery effectiveness | on in-basin migration success of | | | | different rearing/release strategies | | 8343600 | Umatilla Passage O&M -passage | Study results provide information on | | | facility O&M | juvenile fish passage problems at | | | | Three Mile Falls Dam | | 9000501 | Natural Production Monitoring and | Lower river monitoring provides | | | Evaluation - natural production | information on species life history, | | | success | abundance, survival; supplements | |-------|------------------------------------|--------------------------------------| | | | PIT tagging of natural steelhead. | | 88022 | Umatilla River Basin Trap and Haul | Sampling at Westland Canal trap | | | Program-collect/transport juvenile | provides species composition and | | | fish | weight data for transport operations | ## Section 4. Objectives, tasks and schedules ## Objectives and tasks | Obj | | Task | | |-------|-----------------------------------|-------|---------------------------------------| | 1,2,3 | Objective | a,b,c | Task | | 1 | Determine migration | a | Analyze and compile 4 years of | | | parameters, migrant abundance, | | migration data for hatchery and | | | health, survival of juvenile | | natural salmonids into a final | | | salmonids | | document. | | 1 | | b | Compile 4 years of injury and | | | | | health data for hatchery and | | | | | natural salmonids into a final | | | | | document | | 1 | | c | Analyze flow, temperature, | | | | | turbidity and fish migration data to | | | | | determine effects on migration and | | | | | survival.l | | 2 | Sample fish at Westland Canal | a | Compile species composition and | | | during Trap and Haul operations | | condition data collected at | | | | | Westland Canal from 1995 - 1998; | | | | | Summarize data from transport | | _ | | | evaluation tests from 1996 - 1997. | | 3 | Determine passage routes of | a | Review and analyze video | | | juvenile fish at Three Mile Falls | | recorded tapes of juvenile migrant | | | Dam | | passage at the east-bank fish | | | | | ladder. | | 4 | Participate in PIT tag studies on | a | Analyze PIT tag data collected in | | | hatchery and natural fish | | 1997 to determine release site | | | | | effects on survival of hatchery fish. | ## Objective schedules and costs | | Start Date | End Date | | |-------------|------------|----------|--------| | Objective # | mm/yyyy | mm/yyyy | Cost % | | 1 | 10/1998 | 9/1999 | 60.00% | | 2 | 10/1998 | 9/1999 | 5.00% | | 3 | 10/1998 | 9/1999 | 15.00% | | 4 | 10/1998 | 9/1999 | 20.00% | |---|---------|--------|---------------| | | | | TOTAL 100.00% | #### **Schedule constraints.** Time required to complete annual progress report for 1998 and final completion report for project years 1994 - 1998 may extend date beyond 9/1999. #### **Completion date.** 1999 ## Section 5. Budget #### FY99 budget by line item | Item | Note | FY99 | |---------------------------|------------|-----------| | Personnel | | \$94,867 | | Fringe benefits | | \$34,152 | | Supplies, materials, non- | | \$1,000 | | expendable property | | | | Operations & maintenance | | \$8,791 | | Capital acquisitions or | | \$ 0 | | improvements (e.g. land, | | | | buildings, major equip.) | | | | PIT tags | # of tags: | \$ 0 | | Travel | | \$4,160 | | Indirect costs | | \$32,740 | | Subcontracts | NA | \$ 0 | | Other | | \$ 0 | | TOTAL | | \$175,710 | #### Outyear costs | Outyear costs | FY2000 | FY01 | FY02 | FY03 | |-------------------|--------|------|------|------| | Total budget | \$ 0 | | | | | O&M as % of total | | | | | #### Section 6. Abstract #### Response: Projects to enhance and reestablish salmonid populations in the Umatilla River are addressed in the FWP as contributers to the Council's goal of increasing Columbia River basin salmon returns. This project's goal is to determine the overall effectiveness of the fisheries rehabilitation plan by evaluating the outmigration success of hatchery and natural juvenile salmonids in the lower Umatilla River. It provides knowledge for adaptive management of hatchery, river, and canal operations and supplements and complements ongoing or completed evaluations of specific rehabilitation projects. Specific project objectives include 1) determining migrant abundance, migration patterns, health, and survival of species or races of fish respresenting different hatchery rearing and release strategies and natural production groups, and investigating relationships between environmental variables and fish migration, 2) sampling fish during summer transport operations, 3) determining routes used by juvenile fish to pass Three Mile Falls Dam, and 4) conducting PIT tag studies to determine release site effects on fish survival. Yearround monitoring uses various traps for which species-specific efficiencies are determined to estimate migrant abundance and survival of juvenile fish. Fish are sampled daily to obtain biological information and assess seasonal trends. We use video and sampling to assess passage routes of juvenile fish past Three Mile Falls Dam. Results will provide estimates of abundance and survival for specific groups of fish, descriptions of daily and seasonal migration patterns, the relationships between fish movement and river variables, determinations of fish health and condition, and an overview of passage dynamics at Three Mile Falls Dam. ### Section 7. Project description #### a. Technical and/or scientific background. #### Response: Rehabilitation of anadromous fish stocks in the Umatilla River basin in northeastern Oregon requires the restoration of coho salmon *Oncorhynchus kisutch* and spring and fall races of chinook salmon O. tshawytscha, and enhancement of summer steelhead O. mykiss (Boyce 1986). Increased populations of Umatilla River salmon and steelhead has resulted from artificial and natural production (CTUIR and ODFW 1990). These efforts were intended to provide offsite mitigation for Columbia River basin salmon losses (NPPC 1987). The Fisheries Restoration Program in the Umatilla River basin has resulted in increasing numbers of juvenile salmonid migrants as artificial production is increased and natural production is enhanced (Keefe et al. 1993, 1994; Hayes et al. 1996a, 1996b; Focher et al. 1998; CTUIR 1994; Contor et al. 1995, 1996, 1997). Monitoring and evaluation efforts to fine-tune specific restoration projects are ongoing or near completion. However, these efforts did not include an evaluation of the overall migration success and survival of hatchery-released and naturally-produced juvenile salmonids to the lower Umatilla River. The Comprehensive Plan (Boyce 1986) identified the need for an overall evaluation, including outmigration monitoring of hatchery and natural smolts thoughout the entire river basin. In addition, the FWP (NPPC 1994) specified that biological monitoring is needed to provide information for updating subbasin plans, for improving management and conservation of natural populations, for assessing the effectiveness of hatchery rearing and release strategies (including acclimation), and for supplementation research. The project was initially focused on evaluating screening and bypass facilities for juvenile fish at irrigation diversions on the Umatilla River (Knapp and Ward 1990, Hayes et al. 1992, Cameron and Knapp 1993, Cameron et al. 1994, 1995). The evaluations were necessary to ensure that fish were adequately protected at newly reconstructed passage facilities (Boyce 1986; NPPC 1994). Current project research developed out of the need to enlarge the scope of evaluating the success of juvenile salmonid passage within the whole basin and to supplement and complement other ongoing monitoring and evaluation projects. Current research is in its fourth year of monitoring activities. The lead project biologist has worked on the project since its inception in 1989. Previous work was mostly affiliated with juvenile fish passage, collection, and transport operations at U.S. Army Corps of Engineers dams, for a total of 12 years in passage/migration-related work. The assistant project biologist began work with the project in 1992, during the passage evaluation phase. Previous work was mostly associated with population assessments and limnological studies. #### b. Proposal objectives. #### Response: 1. Determine species-specific collection efficiencies of the bypass facility at West Extension Canal under differing operations, diversion rates, and river flows; determine impact of Phase I pumping and canal shutdown on bypass effectiveness; determine trap efficiency of the rotary-screw trap. *Null hypothesis*: There is no significant correlation between canal diversion rate and canal bypass efficiency. *Null hypothesis:* There is no significant correlation between canal river flow and canal bypass efficiency. *Null hypothesis*: These is no significant relationship between rotary trap efficiency and percentage of the river flow sampled. Assumptions: Ability to successfully collect fish and conduct collection efficiency tests at West Extension Canal and the rotary screw trap during all operations, diversion rates, and river flows. *Products:* Collection efficiencies for the canal trap, by species and hatchery and natural fish, during all flow regines and canal operations; trap efficiencies for the rotary screw trap, by species, origin, and flow regimes. 2. Determine migration parameters, migration abundance, and survival of hatchery-released spring and fall chinook salmon, coho salmon, and summer steelhead in the lower Umatilla River; determine above for specific rearing and release strategies of Umatilla production groups; obtain biological data on collected fish. *Null hypothesis*: There is no significant difference in survival of different rearing and release strategies of Umatilla production groups. *Null hypothesis*: There is no significant correlation between level of smoltification and fish length. Assumptions: Ability to effectively collect fish at West Extension Canal and the lower river screw trap during most of the year. Ability to recapture marked fish and obtain valid trap efficiency estimates for computation of migrant abundance and survival estimates; ability to meet the assumptions of standard mark-recapture experiments. Ability of sampling personnel to effectively mark fish for trap efficiency tests, to correctly identify fish and marks and obtain biological information. *Products:* Estimates of lower river migrant abundance, migration rate, timing, and duration, migration magnitude, and survival for each species or race of juvenile salmonid from Michigan and Oregon raceways at Umatilla Hatchery and from Oregon raceways at Bonneville, Carson, and Little White Salmon hatcheries. Length-frequency distributions through time. 3. Determine migration parameters, life history characteristics, migrant abundance, and survival of naturally-produced juvenile salmonids migrating within the Umatilla River; obtain biological data on collected fish. *Null hypothesis*: There is no significant correlation between level of smoltification and fish length. *Null hypothesis*: There is no significant difference between mean lengths of hatchery and natural fish species. Assumptions: Same as #2. *Products:* Estimates of total migrant abundance for natural summer steelhead in the lower river. Total number of natural fall and spring chinook and coho salmon collected. Determination of migration duration and magnitude for the naturally-produced species of juvenile salmonids. Differences in migration parameters between hatchery and naturally-produced species of fish. Indices of smoltification and length-frequency distribution through time. Individual length and weight measurements on PIT-tagged fish. Total number of PIT-tagged natural fish intercepted at lower river trapping sites. Estimates of survival for PIT-tagged natural fish. 4. Determine species composition, condition, and total weight of collected fish at Westland Canal during trap and transport operations. Null hypothesis: None Assumptions: Ability to obtain a representative sample for biological information. Products: Counts and relative proportions of hatchery and natural fish per net load, mean lengths of fish, individual lengths and weights of PIT-tagged fish, assessment of fish condition, and net-load weights for salmonid and non-salmonid species; findings of pathological analysis. 5. Evaluate 24-h mortality and condition of juvenile fish transported from Westland Canal to the lower Umatilla River. *Null hypothesis*: There is no significant difference between 24-h mortality of transported and non-transported fish. *Null hypothesis*: There is no significant difference between condition of transported and non-transported fish. Assumptions: Ability to effectively conduct treatment and control tests to obtain statistically valid results. *Products:* Results from treatment and control studies to test the differences in 24-h mortality and condition between transported and non-transported fish. 6. Investigate relationships between river flow/temperature/turbidity and migation parameters of hatchery and natural fish. *Null hypothesis:* There is no significant correlation between river flow/temperature and migration patterns. Assumptions: Ability to obtain valid environmental and hydraulic data. *Products:* Relationship between environmental variables and migration parameters; association between water temperature and fish mortality. 7. Evaluate cumulative injury to hatchery and natural salmonids emigrating through the lower Umatilla River; determine contributing factors of fish disease and mortality. *Null hypothesis:* There is no significant difference in fish injury levels with time or among species. Assumptions: Ability of sampling personnel to correctly evaluate condition. Products: Counts and proportions of hatchery and natural fish species with specific types of injury, disease, or that have died. Chi-square test results on injury data. Findings of pathological analysis. 8. Determine prevalence of avian and piscivorous predators. Null hypothesis: None Assumptions: Ability to continually observe and correctly identify bird and fish species. *Products:* Documentation of salmonid predators through time at the sampling sites. 9. Estimate juvenile fish passage through the east-bank fish ladder at Three Mile Falls Dam, using video at the viewing window. *Null hypothesis:* There is no significant difference in passage rates of juvenile salmon through the east-bank ladder or through the west-bank bypass facility. Assumptions: Ability to effectively video monitor fish passage and review video tapes Ability to carry out assumptions in #2. *Products:* Counts of juvenile fish passing by the viewing window; diurnal movement patterns of juvenile fish. 10. Analyze juvenile salmonid behavior upstream of the lead gate diffuser at the eastbank ladder at Three Mile Falls Dam, including impact and passage rates. *Null hypothesis*: None. Assumptions: Ability to effectively video monitor fish behavior at selected portions of the diffuser. *Products:* Observations of fish impacts on and passage through the diffuser and of fish densities at various diffuser locations representing high, medium, and low velocity areas and different water depths. 11. Participate in planning and coordination activities associated with anadromous fish passage in the Umatilla basin. *Products:* Effective and coordinated conduct of research projects and dissimination of information necessary for adaptive fisheries management in the basin. 12. Evaluate the utility of using PIT tags to monitor migrating juvenile salmonids in the Umatilla basin; conduct tests to evaluate release-site effects on migration success and survival. *Null hypothesis:* There is no significant difference in survival among fish groups released at different locations. Assumptions: Ability to effectively tag and efficiently detect PIT tagged fish at monitoring sites. Assumptions: Ability to effectively hold, transport, and release fish during tests. *Products:* Database of PIT tag interrogations at all sampling sites to assess affect of release site on survival. c. Rationale and significance to Regional Programs. #### Response: Results from four years of outmigration monitoring will provide a solid database from which valid conclusions can be made in regard to testable hypotheses and correlations. This information will be used to make management decisions to enhance in-river survival and facility passage at irrigation diversions. Passage problems for juvenile fish currently exist at Three Mile Falls Dam. Use of underwater and above water video has provided great insight into fish behavior at ladder structures. Differing operations at West Extension Canal under Phase I pumping affect bypass effectiveness and juvenile passage past the dam. Information on migration rates and timing, overall survival in relation to river conditions and canal operations, and canal bypass collection efficiencies for juvenile salmonids is necessary for decisions on canal and ladder operations, water release strategies, and flow enhancement strategies. Information on fish needs for passage, rearing, and survial is vital to further refine the Umatilla Basin Project. Although smolt-to-adult survival is being assessed through the Umatilla Hatchery Monitoring and Evaluation Project, results are broad in scope and long-term in being fully analyzed. Fine-tuning of hatchery practices can be accomplished with basin-specific information on the outmigration of specific rearing and release strategies. Monitoring of natural salmonids in the lower river is necessary to address critical uncertainties related to natural production monitoring and evaluation and to ascertain life history characteristics in the lower river. Uncertainties related to the success of summer steelhead and fall chinook salmon production groups require a closer in-basin look at survival and migration factors. Degradation of river conditions during summer low flows exacerbate survival problems for subyearling fall chinook salmon. Pathological assessment of hatchery and natural mortalities will further our understanding of in-river fish health. Predation by avian and fish predators may significantly impact the survival success of juvenile salmonids. Information on predators is important to understand the potential for loss of juvenile salmonids at passage facilities and to develop predator deterrence strategies to improve fish survival. The advent of PIT tag detectors at nearby mainstem dams provides the impetus to use this improved technology in the Umatilla Basin for answering critical uncertainties related to natural production success and hatchery effectiveness. Use of the PIT tag technology in the Umatilla basin would improve our research and enhance our understanding of juvenile salmonid life history and migrational characteristics and their success at growth, passage, and survival.. Products of the project will contribute to: evaluating critical uncertainties about survival potential and migration success of hatchery and natural stocks, leading to restoration and supplementation of salmon and steelhead populations in the Umatilla River; reestablishment of anadromous fisheries in the Umatilla River; the Columbia River doubling goal; and knowledge of fish behavior and environmental affects on migration. Study activities will involve coordination and consultation with projects involved in the Umatilla Basin, including the Umatilla Trap and Haul program, Umatilla Hatchery operation, Umatilla Hatchery Monitoring and Evaluation, Bonifer-Minthorn Springs Acclimation Facilities Program, Umatilla River Natural Production Monitoring and Evaluation, Umatilla Passage O&M, and Umatilla River Habitat Enhancement Project. #### d. Project history #### Response: This project is a follow-up to the project to evaluate the loss of juvenile salmon due to passage through screening and bypass facilities at Umatilla River diversion canals and at fish ladders (Knapp and Ward 1990; Hayes et al. 1992; Cameron and Knapp 1993; Cameron et al. 1994, 1995). This research was conducted from 1990 to 1995. Current research developed out of the need to enlarge the scope of evaluating juvenile salmonid passage success (migration and survival) to the basin as a whole and to supplement and complement other ongoing monitoring and evaluation projects. Within the current project, tasks were performed at Three Mile Falls Dam and West Extension Canal to complete the passage evaluation study (Cameron et al. 1997). Monitoring and evaluating the outmigration of juvenile salmonids will have been conducted for four years from 1994 - 1998. During the first year evaluation (1994-1995), we obtained preliminary data on juvenile salmonid migration, abundance, and survival by sampling at numerous sites with various traps (Knapp et al. 1996). Through these experiences, we refined study methods and identified logistical and operational constraints. During the second year (1995-1996), we monitored the salmonid outmigration year-round either at the West Extension Canal or at a lower river rotaryscrew trap. We also initiated an evaluation of juvenile fish transport, tested the use of VIjet tags, and augmented our data collection at Three Mile Falls Dam, including video monitoring at the east-bank ladder (Knapp et al. 1998). During the third year (1996-1997), we used only the rotary-screw trap to monitor the outmigration in an effort to obtain more reliable trap efficiency and fish abundance estimates. We also continued the evaluation of juvenile fish transport, video monitored juvenile fish passage at Three Mile Falls Dam, and tested the use of Photonic tags in outmigration monitoring (Knapp et al., in preparation). Fourth and final year monitoring efforts (1997-1998) are currently underway. Sampling of fish for biological information will be conducted at a lower river trap and two canal traps, including interrogation of fish for PIT tags. Video monitoring at Three Mile Falls Dam will provide additional data on juvenile salmonid passage rates. Survival tests will be conducted using PIT tags and other marks. Work in 1998-1999 will be toward producing the 1998 annual progress report and the final completion report for this project. Findings on migration paremeters, bypass efficiencies, fish condition, ladder passage, and the presence of natural salmonids in the lower river can be applied toward management of river, canal, and passage facility operations and water release and flow enhancement strategies to improve outmigration, passage, survival, and rearing conditions for juvenils salmonids. Survival results may necessitate a change in approach to fisheries restoration efforts to increase effectiveness. Alteration of hatchery rearing and release strategies is partly based on outmigration and survival results for specific strategies. Information on natural production in the lower river will assist managers in determining natural production potential or limitations. Successful natural production enhancement efforts for summer steelhead are contingent on understanding life history characteristics of natural and hatchery stocks. Information on predators could facilitate predator control measures to increase salmonid survival. Results from pathological analysis of migration mortalities contribute to understanding in-river disease dynamics and specific species and stocks of fish. Observations of juvenile fish at ladder structures could affect a change in ladder operations or structures to improve survival. Effectiveness of pilot studies on PIT tag use could alter marking /tagging strategies and provide additional migrational information. #### e. Methods. #### Response: No field sampling will occur in FY99. Tasks will focus on completing the 1998 annual progress report and the final completion report for the four-year study. The final completion report will encompass all study objectives as outlined in Section 4 and Section 7,b. We will continue to use coordination and information exchange processes currently established within the Umatilla Basin (Umatilla River Operations Group, Umatilla Passage Technical Work Group, Umatilla Monitoring and Evaluation Oversight Committee) to share project results, provide recommendations, and assist with activity coordination within the basin. #### f. Facilities and equipment. Response: - 1. Offices: Office space in Hermiston currently occupies a 2,600 ft² suite and is shared with another project. Office is equipped with Fax machine and copier. - 2. Computer Equipment: Two desk-top (386 + 486) and one lap-top computer (486) are available for word processing, data summarization and analysis, and graphics development. MS Office is the standard software used. A 33.3kbps modem is connected for email exchange and internet access. - 3. *Vehicles*: One vehicle will be used for transporting project staff to meetings, field sites, and training year-round. Vehicle will be obtained from DAS. #### g. References. #### Response: - Boyce, R.R. 1986. A comprehensive plan for rehabilitation of anadromous fish stocks in the Umatilla River basin. Report DOE/BP-18008-1, Bonneville Power Adminstration, Portland, Oregon. - Burnham, K.P., D.R. Anderson, G.C. White, C. Brownie, and K.H. Pollock. 1987. Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph 5:1-437. - Cameron, W.C. and S.M. Knapp. 1993. Pages 5-48 *in* S.M. Knapp, editor. Evaluation of juvenile fish bypass and adult fish passage facilities at water diversions in the Umatilla River. Annual Report 1992. DOE/BP01385-3, Bonneville Power Administration, Portland, Oregon. - Cameron, W.A., S.M. Knapp, and B.P. Schrank. 1994. Pages 1-76 *in* S.M. Knapp, editor. Evaluation of juvenile fish bypass and adult fish passage facilities at water diversions on the Umatilla River. Annual Report 1993. DOE/BP-01385-4, Bonneville Power Administration, Portland, Oregon. - Cameron, W.A., S.M. Knapp, and B.P. Schrank. 1995. Pages 1-98 *in* S.M. Knapp, editor. Evaluation of juvenile fish bypass and adult fish passage facilities at water diversions on the Umatilla River. Annual Report 1994. DOE/BP-01385-5, Bonneville Power Administration, Portland, Oregon. - Contor, C.R., E. Hoverson, and P. Kissner. 1995. Umatilla basin natural production monitoring and evaluation. Annual progress report 1993-1994 to Bonneville Power Administration, Portland, Oregon - Contor, C.R., E. Hoverson, P. Kissner, and J. Volkman. 1996. Umatilla basin natural production monitoring and evaluation. Annual progress report 1994-1995 to Bonneville Power Administration, Portland, Oregon. - Contor, C.R., E. Hoverson, P. Kissner, and J. Volkman. 1997. Umatilla basin natural production monitoring and evaluation. Annual progress report 1995-1996 to Bonneville Power Administration, Portland, Oregon. - CTUIR (Confederated Tribes of the Umatilla Indian Reservation) and ODFW (Oregon Department of Fish and Wildlife). 1989. Umatilla River subbasin salmon and steelhead plan. Prepared for the Northwest Power Planning Council for Columbia basin system planning. - CTUIR (Confederated Tribes of the Umatilla Indian Reservation) and ODFW (Oregon Department of Fish and Wildlife). 1990. Umatilla hatchery master plan. Prepared for the Northwest Power Planning Council, Portland, Oregon - CTUIR (Confederated Tribes of the Umatilla Indian Reservation). 1994. Umatilla basin natural production monitoring and evaluation. Annual progress report 1992-1993 to Bonneville Power Administration, Portland, Oregon. - Dauble, D.D., J. Skalski, A. Hoffman, and A.E. Giorgi. 1993. Evaluation and application of statistical methods for estimating smolt survival. Report to Bonneville Power Administration, Portland, Oregon. - Focher, S.M., R.W. Carmichael, M.C. Hayes, and R.W. Stonecypher, Jr. 1998. Umatilla hatchery monitoring and evaluation. 1996 annual progress report to Bonneville Power Administration, Portland, Oregon. - Hayes, M.C., S.M. Knapp, and A.A. Nigro. 1992. Pages 53-103 *in* S.M. Knapp, editor. Evaluation of juvenile fish bypass and adult fish passage facilities at water diversions in the Umatilla River. Annual and interim progress reports. DOE/BP-10385-2, Bonneville Power Administration, Portland, Oregon. - Hayes, M.C., R.W. Carmichael, S.M. Focher, N.L. Hurtado, M.L. Keefe, G.W. Love, W.J. Groberg, Jr., S.T. Onjukka, and K. Waln. 1996a. Umatilla Hatchery Monitoring and Evaluation. Annual progress report to Bonneville Power Administration, Portland, Oregon. - Hayes, M.C., R.W. Carmichael, S.M. Focher, W.J. Groberg, Jr., S.T. Onjukka, R.W. Stonecypher, Jr., and K. Waln. 1996b. Umatilla Hatchery Monitoring and Evaluation. Annual progress report to Bonneville Power Administration, Portland, Oregon - Keefe, M.L., R.W. Carmichael, R.A. French, W.J. Groberg, and M.C. Hayes. 1993. Umatilla hatchery monitoring and evaluation. Annual progress report to Bonneville Power Administration, Portland, Oregon. - Keefe, M.L., R.W. Carmichael, S.M. Focher, W.J. Groberg, and M.C. Hayes. 1994. Umatilla hatchery monitoring and evaluation. Annual progress report to Bonneville Power Administration, Portland, Oregon. - Knapp, S.M. and D.L. Ward. 1990. Pages 1-32 *in* A.A. Nigro, editor. Evaluation of juvenile fish bypass and adult fish passage facilities at Three Mile Falls Dam, Umatilla River. Annual Report 1990. DOE/BP-01385-1, Bonneville Power Administration, Portland Oregon. - Knapp, S.M., J.C. Kern, W.A. Cameron, S.L. Shapleigh, and R.W. Carmichael. 1996. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. 1994-1995 annual progress report to the Bonneville Power Administraion, Portland, Oregon. - Knapp, S.M., J.C. Kern, W.A. Cameron, S. M. Snedaker, and R.W. Carmichael. 1998. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. 1995-1996 annual progress report to Bonneville Power Administration, Portland, Oregon. - Knapp, S.M., J.C. Kern, W.A. Cameron, and R.W. Carmichael. In Prep. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. 1996-1997 annual progress report to Bonneville Power Administration, Portland, Oregon. - Murphy, M.L., J.F. Thedinga, and J.J. Pella. In Prep. A bootstrap method for obtaining confidence intervals for population estimates of migrating fish. National Marine Fisheries Service. Juneau, Alaska. - NPPC (Northwest Power Planning Council). 1987. Columbia River basin fish and wildlife program (as amended). Northwest Power Planning Council, Portland, Oregon. - NPPC (Northwest Power Planning Council). 1994. Columbia River basin fish and wildlife program. Northwest Power Planning Council, Portland, Oregon. - Snedecor, G.W., and W.G. Cochran. 1989. Statistical Methods. Iowa State University Press. Ames, Iowa. - USBR (U.S. Bureau of Reclamation) and BPA (Bonneville Power Administration). 1989. Umatilla basin project. Initial project workplan presented to the Northwest Power Planning Council, May 1989. ## Section 8. Relationships to other projects #### Response: Study scope and approach of this project was developed in conjunction with CTUIR's Umatilla Basin Natural Production Monitoring and Evaluation Plan and ODFW's Umatilla Hatchery Monitoring and Evaluation Plan. This project supplements monitoring efforts of the Natural Production M&E by monitoring and collecting biological information on natural migrants in the lower river, including supplemented summer steelhead populations. This activity meets measures 7.0C.4, 7.1C, and 7.4L.1 of the FWP. This project also supplements monitoring efforts of the Umatilla Hatchery M&E by monitoring the migration characteristics and estimating in-basin survival of fish production groups from different hatchery rearing and release strategies. Such information can be used in adaptive management decisions to improve new and existing hatchery effectiveness. This activity meets measures 7.2D.1, 7.4I, and 7.4I.1 of the FWP. Information obtained on lamprey and their migrations is shared with CTUIR's Lamprey Investigation Project. Information on flow and fish relatioships is shared with river flow managers involved with the Umatilla Basin Project, including US Bureau of Reclamation, CTUIR, and Oregon Water Resources Department. Information on fish passage problems at screening and ladder facilities, and potential recommendations, is shared with the USBR and local irrigation districts which are responsible for passage facility operations and maintenance in the Umatilla basin, and the National Marine Fisheries Service which is responsible for developing operational criteria (meets measure 7.10A.2 of FWP). This project complements the Habitat Improvement Project in the Umatilla basin by monitoring any changes in fish abundance possibly due to habitat improvement or degradation. Monitoring coho salmon migrants in the lower river and sampling at Westland Canal during summer transport operations supplements activities and provides information to CTUIR's Bonifer-Minthorn Springs Acclimation Facilities Program. Sampling at Westland Canal also provides information for effective operation of the Umatilla River Trap and Haul Program. Cooperation and collaboration amongst all parties and agencies involved in the Umatilla basin allows sharing of information to fill database gaps among projects and sharing of equipment, provides staff assistance during field sampling, and opportunities for participation in joint studies. Transfer of project information occurs to improve river operations, to fine-tune operating criteria for specific facilities, and to improve management decisions in the adaptive management process. Project staff also involve local schools, organizations, other agencies, and other scientists in their activities, either through field opportunities, classroom lectures, sharing of expertise, equipment, or information, or obtaining permission for specific work. Approval for access and work at the in-river trap site is required of the Oregon Department of Transportation and approval for access to property for release of test fish is required of the Hermiston Wastewater Treament Plant and private landowners. We work with scientists with the National Marine Fisheries Service in sharing information and developing recommendations at passage facilities. An arrangement has been established with the U.S. Fish and Wildlife Service to use their field trailer as an on-site office. We obtain specific database information necessary for project data analysis from the Oregon Water Resources Department, the National Weather Service, and the U.S. Geological Survey. We assist the Umatilla Basin Watershed Council in their understanding of basin issues through tours of passage facilities and trap sites. We require assistance from the Oregon State Police and the local county sheriff's department when hunting or fishing violations are observed during the course of our work. ## Section 9. Key personnel #### Response: Program Leader: Richard W. Carmichael; FTE = 0.08 Project Leader: Suzanne M. Knapp; FTE = 1 Ass't Project Leader: William A. Cameron; FTE = 1 Seasonal workers: FTE = 2 #### Program Manager Richard W. Carmichael #### **EDUCATION** 1983 - M.S., Fisheries Science, Oregon State University, Corvallis, OR 1978 - B.S., Fisheries Science, Oregon State University, Corvallis, OR #### **EXPERIENCE** 7/90 - Present **Program Leader - Executive Manager,** Oregon Department of Fish & Wildlife, 211 Inlow Hall, EOU, La Grande, OR 97850 Program leader for NE Oregon Scientific Investigations Program. Primary responsibilities are to develop and direct implementation of a complex research program to evaluate success of protecting, reestablishing, and restoring ESA listed and non-listed stocks in eastern Oregon, oversee the work of 14 full-time fisheries biologists and up to 8 projects, and represent ODFW on regional and national scientific committees. | 12/83 - 7/90 | Fisheries Research Biologist (Project Leader), Oregon Department of Fish & Wildlife, La Grande, OR | |--------------|----------------------------------------------------------------------------------------------------| | 3/83 - 12/83 | Fisheries Research Biologist (Ass't Project Leader). Oregon | | | Department of Fish & Wildlife, La Grande, OR | | 10/82 - 3/83 | Project Assistant (Experimental Biology Aid) , Oregon Department of Fish & Wildlife, La Grande, OR | |--------------|-----------------------------------------------------------------------------------------------------------| | 1/80 - 7/83 | Research Assistant, Oregon State University, Corvallis, OR | #### **EXPERTISE** Nineteen years of experience in fisheries work. Expertise in fisheries research project development and implementation, personnel management, budget development and tracking, technical report writing, natural production and supplementation research, statistical analysis, coded-wire tag implementation and assessment, bass and trout ecology, creel censusing. #### **PUBLICATIONS** R.W. Carmichael. In Press. Straying of Umatilla River hatchery origin fall chinook salmon into the Snake River. *In* Genetic Effects of Straying of Non-Native Hatchery Fish into Natural Populations (R.S. Waples, convenor). National Oceanic and Atmospheric Administration, Seattle, WA. Carmichael, R.W. and R.T. Messmer. 1995. Status of supplementing chinook salmon natural production in the Imnaha River basin. *In* Uses and Effects of Cultured Fishes in Aquatic Ecosystems (H.L. Shramm, Jr., and R.G Piper, eds.). Whitesel, T.A., P.T. Lofy, R.W. Carmichael, R.T. Messmer, M.W. Flesher, and D.W. Rondorf. 1994. A comparison of the performance of acclimated and direct stream released, hatchery-reared steelhead smolts in Northeast Oregon. Pages 87-92 *in* High Peformance Fish (D.D. MacKinlay, ed.); Fish Physiology Section, American Fisheries Society, Fish Physiology Association, Vancouver, British Columbia, Canada. Whitesel, T.A. and R.W. Carmichael. 1994. Bimodal development and smoltification in hatchery-reared chinook salmon. Pages 116-121 *in* High Performance Fish (D.D. MacKinlay, ed.); Fish Physiology Section, American Fisheries Society, Fish Physiology Association, Vancouver, British Columbia, Canada. #### Project Leader Suzanne M. Knapp #### **EDUCATION** 1981 M.S., Biology, Eastern Washington University, Cheney, WA 1976 B.S., Environmental Health, Boise State University, Boise, ID 1974 B.S., Zoology, The College of Idaho, Caldwell, ID 1971 A.A., Liberal Arts, Long Beach City College, Long Beach, CA #### **EXPERIENCE** 11/89 - Present **Fisheries Research Biologist**, Oregon Department of Fish and Wildlife, 80866 Hwy 395 No., Hermiston, OR 97838 Project leader for the Umatilla River Outmigration and Survival Study. Primary responsibilities are to identify and oversee research goals and objectives, administer and coordinate project operations, develop and monitor project budget, conduct data analyses and management, prepare reports, presentations, and proposals, hire, train, and supervise project personnel, participate in collection of scientific data, manage a field office, participate in interagency planning/coordination meetings, and provide technical assistance to agency staff. | 2/87 - 10/89 | Fishery Biologist , U.S. Army Corps of Engineers, Umatilla, OR | |--------------|------------------------------------------------------------------------------------------------------------------| | 4/86 - 6/86 | Fishery Biologist, U.S. Army Corps of Engineers, Umatilla, OR Hydroacoustic Technician, Parametrix, Bellevue, WA | | 9/84 - 4/85 | Fishery Biologist, U.S. Fish & Wildlife Service, Cook, WA | | 7/83 - 1/84 | Fishery Biologist, U.S. Fish & Wildlife Service, Cook, WA Biological Technician, National Marine Fisheries Ser., Pasco, WA | |--------------|----------------------------------------------------------------------------------------------------------------------------| | 3/83 - 7/83 | Biological Technician , National Marine Fisheries Ser., Pasco, WA | | 3/78 - 12/78 | Aquatic Biologist, Envirosphere Company, Satsop, WA | #### **EXPERTISE** Twelve years experience in salmonid passage and migration on mainstem Columbia River and tributaries. Five years of experience in macroinvertebrate taxonomy and fish food habits. Expertise in technical report writing, personnel management, project planning and development, budget development and tracking, passage/bypass facility designs and operation at dams and canals, smolt monitoring, aquatic entomology, computer usage. #### **PUBLICATIONS** Cameron, W.C., S.M. Knapp, and R.W. Carmichael. 1997. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report to Bonneville Power Administration, Portland, Oregon (DOE/BP-01385-7). Knapp, S.M., J.C. Kern, W.A. Cameron, S.M. Snedaker, and R.W. Carmichael. 1997. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual progress report 1995-1996 to Bonnville Power Administration, Portland, Oregon. Knapp, S.M., J.C. Kern, W.A. Cameron, S.L. Shapleigh, and R.W. Carmichael. 1996. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual progress report 1994-1995 to Bonneville Power Administration, Portland, Oregon. Knapp, S.M. and P. Wagner. 1988 and 1989. Fingerling collection and transport summary, McNary Project. U.S. Army Corps of Engineers summary report to the Fish Transportation and Oversight Team. Knapp, S.M. and R.A. Soltero. 1983. Trout-zooplankton relationships in Medical Lake, WA, following restoration by aluminum sulfate treatment. Jour. Freshwater Ecol. 2: 1- #### Assistant Project Leader William A. Cameron #### **EDUCATION** 1990 - M.S., Fisheries Biology, Oregon State University. 1982 - B.S., Fisheries Biology, Humboldt State University. #### **EXPERIENCE** 2/92 - Present **Fishery Biologist** (Assistant Project Leader), Oregon Dept. Fish & Wildlife, 80866 Hwy 395, Hermiston, OR 97838 Current project objectives are to determine the timing, abundance, and survival of juvenile salmonid migrants in the Umatilla River. Duties include assisting with the development and implementation of study plans, coordinating activities with government agencies, tribes, and irrigation districts, procuring equipment and supplies, operating juvenile fish traps in-river and at canal facilities, collecting biological and hydrological data, conducting mark-recapture studies, directing activities of seasonal employees, conducting appropriate scientific analysis of data, conducting literature searches, writing annual progress reports and journal articles, presenting talks at meetings, providing technical assistance to agency staff and managers, maintaining professional development through training opportunities. 5/91 - 2/92 **Fishery Biologist**, U.S. Forest Service, McKenzie Bridge, OR 97413 10/88 - 1/91 OR 97331 6/87 - 10/87 Corvallis, OR 6/84 - 4/87 Sitka, AK 99835 5/83 - 9/83 4/82 - 9/82 95221 Research Assistant, NPS Coop. Park Study Unit, O.S.U., Corvallis, Experimental Biological Aid, NPS Coop. Park Study Unit, O.S.U., Fisheries Researcher, Northern SE Regional Aquaculture Assoc., Biological Aide, California Dept. Fish & Game, Burney, CA Field Assistant, City of Arcata, Marsh Pilot Project, Arcata, CA #### **EXPERTISE** Fourteen years of work experience conducting fisheries and limnological studies. Completed studies and written reports on juvenile salmonid outmigration and survival, juvenile salmonid passage at fish bypasses and ladders, resident fish populations in streams, assessments of bull trout stream restoration projects, effects of warm springs on the physical, chemical, and biological characteristics of lakes and stream, effects of inorganic nutrient additions to the physical, chemical, and biological characteristics of a lake ecosystem and it's capacity to produce salmon smolts. Extensive experience operating juvenile fish traps, marking fish, collecting and analyzing fisheries data and water samples, operating scientific instruments in the field and laboratory, conducting statistical analyses, and writing reports. #### **PUBLICATIONS** Cameron, W.A., S.M. Knapp, and R.W. Carmichael. 1997. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report to Bonneville Power Administration, Portland, Oregon (DOE/BP-01385-7). Cameron, W.A. and G.L. Larson. 1993. Limnology of a caldera lake influenced by hydrothermal processes. Arch. Hydrobiol. 128 (1): 13-38. Cameron, W.A. and G.L. Larson. 1991. Baseline inventory of the aquatic resources of Aniakchak National Monument, Alaska. Final report to National Park Service, Anchorage, Alaska. Cameron, W.A. 1990. Responses to fertilization and fish stocking in the pelagic ecosystem of a naturally fishless lake. Final report to Northern SE Regional Aquaculture Assoc, Sitka, AK. ## Section 10. Information/technology transfer #### Response: Progress reports will be written annually and distributed to those on the BPA publications distribution list. Final completion reports are written at the conclusion of the project and distributed similar to annual progress reports. Journal articles are being developed on specific aspects of the project and on the final report. Results are presented at Umatilla Passage Technical Work Group meetings, Umatilla Monitoring and Evaluation Oversight Committee meetings, and Umatilla River Operations Group meetings. A Umatilla basin research review is to be held in early 1998, covering most research projects within the basin. Presentations are given at AFS meetings, special workshops, and CBFWA and BPA public reviews.